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Technical Note 1 – Choosing GCMs

Choosing GCMs

1. GCM performance from literature
Many studies have evaluated the performance of GCMs over south-east Australia using different 
variables and metrics. Here we build on the meta-analysis of Smith & Chandler (2010). First, more 
recent evaluations over Australia, not covered in Smith & Chandler (2010) are added to the 
analysis for a total of 11 studies (see Table 1). Then a fractional demerit point was calculated to 
indicate the models over-all performance. The lower the fractional demerit the better the 
performance.

Table 1: Summary of model assessments

Assessment region Australia MDB SE 
Australia

Model Fractional 
Demerit

A B C D E F G H I J K

UKMO-HadCM3 0 0 Yes 6 608 179

CSIRO-Mk3.5 0 5 1 207

GFDL-CM2.1 0.111 0 Yes 2 672 Yes No Yes 0.72 184

GFDL-CM2.0 0.125 0 Yes 2 671 Yes No Yes 252

MIROC3.2
(hires)

0.125 0 Yes 7 608 12 9 Yes 201

CSIRO-Mk3 0.182 1 No 7 601 Yes 1 2 Yes No 0.73 214

UKMO-
HadGEM1

0.2 0 No 2 674 163

ECHAM5/MPI 0.222 0 Yes 1 700 Yes No No 0.79 173

MIUB-ECHO-G 0.222 0 No 4 632 Yes Yes No 0.78 174

INM-CM3.0 0.222 1 No 7 627 9 11 Yes 0.75 192

NCAR CCSM3 0.273 0 No 2 677 No 4 6 No 0.68 245

CNRM-CM3 0.286 0 No 4 542 No 0.73 196

FGOALS-G1.0 0.3 2 No 2 639 No 8 4 Yes 0.66 251

MIROC3.2
(medres)

0.364 2 Yes 7 608 Yes 11 3 Yes No 0.6 255
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CCCM3.1(T63) 0.375 1 10 478 2 7 No 0.72 241

MRI-CGCM2.3.3 0.455 1 No 3 601 No 10 12 Yes Yes 0.41 437

CCCM3.1(T47) 0.455 1 No 8 518 No 3 10 Yes No 0.77 186

GISS-ER 0.5 0 No 8 515 Yes 6 5 No No 238

BCCR-BCM2.0 0.5 5 5 590 Yes No 485

GISS-AOM 0.667 1 No 8 564 No 7 13 Yes 0.6 326

IPSL-CM4 0.8 2 No 14 505 No 13 8 Yes 0.48 394

NCAR PCM 0.833 3 No 11 506 0.64 309

GISS-EH 1 5 No 14 304 14 14 487
A number of rainfall criteria failed (Smith and Chandler 2010), B satisfied ENSO criteria (Min et al. 2005; van 
Oldenborgh et al. 2005), C demerit points based on criteria for rainfall, temperature and MSLP (Suppiah et 
al. 2007), D M-statistic representing goodness of fit at simulating rainfall, temperature and MSLP over 
Australia (Watterson 2008), E satisfied criteria for daily rainfall over Australia (Perkins et al. 2007), F order 
of model based on the total skill scores for each rainfall metric (Kirono, et al 2010), G order of model based 
on the total skill scores for each of rainfall and PET metric (Kirono, et al 2010), H satisfied criteria for daily 
rainfall over MDB region (Maximo et al. 2008), I satisfied criteria for MSLP over MDB region (Charles et al. 
2007), J combination of RMSE of mean annual rainfall across south-east Australia and mean NSE (rainfall > 
1mm) comparing GCM-simulated and observed daily rainfall distribution with equal weights (Vaze et al 
2011), K RMSE of mean annual rainfall over south-east Australia (Chiew, et al 2009)

Demerit points are added to a GCM in two ways. For evaluations which provided a binary pass/fail 
outcome any fail equals one demerit point. For evaluations that provide a continuous measure, 
any GCM that falls in the 25% worst performing GCMs receives one demerit point. All demerit 
points across the published studies are totalled for each GCM. Since not every GCM was present in 
every study this demerit total is then divided by the total number of studies the GCM appeared in 
to calculate the fractional demerit. In this way fractional demerit scores of 0.5 or above indicate 
that the GCM was amongst the 25% worst GCMs at least half of the time. These consistently worst 
performers were then removed from further analysis.

2. GCM Independence
In the method of Abramowitz and Bishop [2010] the model independence is defined based on the 
correlation of model errors. For precipitation, mean temperature, the daily time series for each 
event is bias corrected using the BAWAP observations, to produce an anomaly time series. These 
time series are then used to create the model error covariance matrix. Abramowitz and Bishop 
[2010] are able to show that the coefficients of a linear combination of the models that optimally 
minimizes the mean square error depends on both model performance and model dependence. 
The solution of this minimization problem can be written in terms of the covariance matrix already 
constructed. The size of the coefficients assigned to each model reflects a combination of model 
performance and independence. That is, the models with the largest coefficients are the best 
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performing/most independent models in the ensemble.

These coefficients are calculated for each variable and then averaged to give the overall 
performance/independence of each model (Table 2). 

Table 2: The absolute GCM independence coefficient for each model.

models temperature precipitation average rank

miroc3_2_medres 0.3524954 0.03638067 0.38887607 1

ukmo_hadgem1 0.1360727 0.06942903 0.20550173 2

inmcm3_0 0.16053 0.04361571 0.20414571 3

gfdl_cm2_0 0.07290747 0.1077916 0.18069907 4

mpi_echam5 0.07039613 0.09215108 0.16254721 5

mri_cgcm2_3_2a 0.06236396 0.084668 0.14703196 6

miub_echo_g 0.08682907 0.0413819 0.12821097 7

gfdl_cm2_1 0.02902377 0.0799438 0.10896757 8

cccma_cgcm3_1 0.02332552 0.07327753 0.09660305 9

ukmo_hadcm3 0.03306758 0.06017381 0.09324139 10

csiro_mk3_5 0.005901015 0.08603905 0.091940065 11

csiro_mk3_0 0.03983158 0.0502712 0.09010278 12

ncar_ccsm3_0 0.00908887 0.07265306 0.08174193 13

cnrm_cm3 0.006109701 0.05134836 0.057458061 14

3. GCM future changes
The projected future changes of all the reasonably well performing GCMs are considered equally 
probable future changes. As such we want to choose models that sample from this future change 
space, while being as independent as possible. The GCM independence rankings are plotted in the 
future precipitation/temperature change space in Figure 1. 

Based on these criteria the ideal GCM choice would be 

1. MIROC (1)

2. HadGEM (2)

3. GFDL 2.0 (4)

4. CCCMA (9)
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Due to many groups not keeping all the required data to run the WRF model, alternative choices 
have to be made. The GCM choice used in practice is

1. MIROC (1)

2. ECHAM5 (5)

3. CCCMA (9)

4. CSIRO mk3.0 (12)
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Figure 1: Future change space for the GCMs numbered by their independence  
rank given in Table 2. The change is between the mean of 1990-2009 and the  

mean of 2060-2079.
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